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Conjugate gradient descent algorithms have been used in several magnetohydrodynamic 
(MHD) equilibrium codes to find numerical minima of the MHD energy and thus to locate 
local stable equilibria. Numerical convergence studies with the spectral equilibrium code 
VMEC (variational moments equilibrium code) have shown that the number of descent itera- 
tions required to obtain a lixed level of convergence grows linearly with the number of radial 
mesh points. This undesirable mesh dependence is due to the quadratic dependence on the 
radial mesh spacing of the condition number for the linearized discrete MHD equations. By 
use of a preconditioning matrix to coalesce the eigenvalues of the linearized MHD forces 
around unity, it is possible to reduce the condition number substantially and thereby nearly 
eliminate the mesh size dependence of the convergence rate of the descent algorithm. An inver- 
tible, positive-delinite tridiagonal preconditioning matrix is derived from the force equations 
used in VMEC, and the improvement in temporal convergence is demonstrated for several 
three-dimensional equilibria. 

1. INTRODUCTION 

Improvements in the accuracy [l] and speed [2] of numerical computations of 
magnetohydrodynamic (MHD) equilibria based on energy minimization have 
recently been reported. In this paper, the preconditioning algorithm described in 
Ref. [2] has been adapted to the spectral equilibrium code VMEC [ 11. The result 
is to essentially eliminate any dependence of the convergence rate on the number 
of radial grid points, N,. The resultant preconditioned code is capable of analyzing 
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equilibria on very line radial meshes (N, N 102). It can therefore be used in stability 
calculations where extremely accurate equilibria are required to analyze radially 
localized modes [3]. 

The equilibrium code VMEC solves the MHD force balance equation F,,, = 
J x B - Vp = 0 in three-dimensional (3D) toroidal geometry. Here, J = ,uOV x B is 
the plasma current, B is the magnetic field, and p is the isotropic plasma pressure. 
Fourier analysis is performed in the two angular coordinates (0, d), and a grid is 
used for the remaining dependence on the radial coordinate, s. Extensive numerical 
convergence studies with VMEC have shown that the number of iterations required 
for convergence of the force residual IF MnDl2 grows linearly with the number of 
radial grid points. This unfavorable scaling with N, is due to the second-order 
spatial derivative structure of the MHD force operator, which implies a condition 
number P - N:. (Th e condition number for the nonlinear MHD equilibrium 
problem is defined as the ratio of the largest to the smallest eigenvalue of the 
linearized MHD force operator at a fixed time.) A second-order temporal 
integration scheme is used in VMEC (see Eq. (2a)), so that the convergence time 
scales as P’12 N N,. 

Clearly, a reduction in P will improve the convergence rate of any descent algo- 
rithm based on an energy minimizing principle. In the MHD problem of interest 
here, the energy functional is W= j(B2/2p0 + p/(y - 1)) dK (y is the adiabatic 
index, which is chosen to be $ in the present calculations.) A well-known technique 
for reducing P is to “precondition” the energy gradient vector ( -VW) by a positive 
matrix M so that -M .V W is approximately diagonal, with the diagonal elements 
nearly equal to one [4]. In Section 2, such a preconditioning matrix is derived for 
the set of spectral equilibrium equations used in VMEC. Then, in Section 3, the 
mesh dependence of the convergence rate for the temporal iteration scheme based 
on the preconditioned forces is contrasted with that of the one based on the original 
(unconditioned) MHD forces. 

2. DERIVATION OF PRECONDITIONING MATRIX 
FOR THE MHD INVERSE EQUILIBRIUM EQUATIONS 

The VMEC code obtains the solution of the MHD energy minimization problem 
by solving for the cylindrical coordinates (R, 4, Z) in terms of the toroidal flux 
(radial) coordinate s, toroidal angle [, and poloidal angle 8. The equations are 
simplified by choosing the toroidal angle c = 4. Let xi = R and x2 = Z. In VMEC, 
these coordinates are expanded in Fourier series: 

In Eq. (l), sj denotes the equally spaced radial (flux) nodes for j = 1, . . . . N, and Xr 
are the Fourier amplitudes of x, (for c1= 1,2) which are to be determined by the 
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energy minimization. Variation of the discretized MHD energy W= j(Bz/2po + 
p/(y - 1)) dV yields gradients, Fy E --a W/aX~, which must vanish in the 
equilibrium state: Fy = 0. Here, Fz are the transforms of the cylindrical (Vx,) 
components of the MHD force FMHD = J x B - Vp. 

The expressions for Fz are nonlinear functions [5] of X, as well as the spatial 
derivatives dX/ds and d2X/ds2. Here, X = {XF -N, . . . . Xr”, e-N, . . . . XFN} denotes 
the vector of Fourier amplitudes of R and 2. Because of this nonlinearity, and the 
typically large number of harmonics needed to accurately describe realistic equi- 
libria, an iterative scheme has been developed to solve the simultaneous coupled 
nonlinear equations F&““(X) = 0 for the coordinate transform amplitudes XT(sj). A 
second-order Richardson scheme [3 3 is used to evolve X to the equilibrium state 
F?(X) = 0: 

d2Xm” 1 dX”” 
JL(x-7 = dt* ~+-~=F~(X). 

E dt Pa) 

Multiplying Eq. (2a) by dXr/dt and summing over modes and mesh points leads 
to the energy dissipation relation 

d(W,+W 1 w 

dt = -; KY (2b) 

where WK= iCj,tn,n,u [dXy(sj)/dt]* 2 0 is the “kinetic” energy. Equation (2b) 
guarantees the descent of the MHD energy, W, to a local minimum value. 

Equation (2a) forms the basis of a temporal iteration scheme for obtaining the 
Fourier amplitudes X in the equilibrium state. As shown in Appendix A, Eq. (2a) 
may be integrated over the time interval t E [t,, t,+ r = t, + At] to yield a second- 
order, explicit iteration method which is a generalization to nonlinear systems of 
the standard (linear) conjugate gradients algorithm [6], 

The number of iterations required for convergence of the iterative scheme in 
Eq. (A2) can be estimated by linearizing the force in Eq. (2a) around an equilibrium 
solution, X = X,, . Let fa(x,, S, ($4) denote the real-space representation of the 
MHD force components (i.e., the inverse transform of Fr(X)). The spatial 
discretization of the second-order partial differential operator f, yields a matrix 
with a condition number P proportional to the sum of the squares of the number 
of mesh points (or Fourier modes) in each coordinate direction. If the iteration is 
interpreted as a discretized “artificial” time operator [7], then the steady-state 
(equilibrium) solution of Eq. (2a) will have an error tending to zero as 

exp( -a 0 I-I ere, -Amin is the smallest eigenvalue (in absolute magnitude) of 
f,. For explicit time differencing of the force operator in Eq. (2a), the time step At 
is limited by the numerical stability criterion At < 2/Jm, where -A,,, is the 
largest eigenvalue of f*. Since t = N At, the number of iterations N required for 
convergence to a fixed error scales as N N ,/?x z P112 z N,, where N, is the 
number of radial mesh points. For the refined radial meshes of interest for local 
mode analysis (N, > 102), this scaling can be prohibitive. 
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One way to improve the convergence rate of Eq. (A2) is to reduce P. (Another 
possibility, not considered here, is to use a semi-implicit time-differencing scheme 
for the force operator.) This can be accomplished by multiplying (or conditioning) 
the force vector F (with (F), = FT”) by a positive-definite matrix M. (M must be 
positive definite so that the energy minimization property of Eqs. (2) is retained.) 
The preferred choice for M would be the negative inverse of the Hessian matrix of 
W; i.e., M = - (a’W/aX 8X))‘. With M chosen in this way, the eigenvalues of the 
“preconditioned” force, F, = M .F, would all be - 1, and Eqs. (2) would theoreti- 
cally converge in only a few iterations (independent of N,). However, for MHD 
problems in three spatial dimensions, it is impractical to compute and invert the full 
Hessian matrix, which includes the Fourier mode number, as well as radial, 
couplings. (In matrix language, the discretization of F does not yield a sparse, or 
banded, matrix.) 

A practical preconditioning matrix M for the MHD problem may be obtained as 
the inverse of an approximate linearized operator. This operator is derived by 
averaging the coefficients of the highest derivatives in the exact MHD force 
operator over the angles 0 and 4. The resulting linear second-order operator in real 
space, YET,, has coefficients which are functions of the radial coordinate (s) alone and 
thus can be easily inverted in Fourier space. It is found numerically that the inverse 
7;’ is an accurate approximation to the inverse Hessian, and therefore it is also a 
suitable preconditioner. 

Let the approximation to f, be given by 

(3) 

where the diffusion coefficients 0: > 0 are defined below. (Recall f, =, = fR and 
faz2 = fi.) In Fourier space, the preconditioned evolution equation which replaces 
Eq. (2a) becomes 

L,(Xfy= - [F’;‘F,(X)]““E Yr(X). (4) 

Here, YT is the Fourier component of the preconditioned force operator. It 
satisfies the equation 

PFYY = -FY(X), (54 

where Py is the Fourier-space representation of the operator Ye given in Eq. (3): 

(5b) 

For fixed values of m and n, the discretization of Eq. (5a) on a radial mesh yields 

My . Yfy(Sj) = F?(Si), (6a) 
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where M”” is a negative-definite tridiagonal matrix: 

j=i- 1, 

D3Si- l/2) + msi+ l/2) 

AS2 
- m2 Des(s.) - n2 D++(s.) c( I OL I 7 j=i, (6b) 

j=i+ 1. 

The explicit preconditioning matrix given in Eq. (6b) is determined at the radial 
grid points j = 1 and j = N, by boundary conditions at s = 0 and s = 1, respectively. 
At the magnetic axis s = 0 (j = 1 ), which is an interior point of the polar flux coor- 
dinates, regularity of the solution requires 0; = 0. This provides a natural bound- 
ary condition for the m = 0 modes. For modes with m > 0, Xr(0) = 0 implies that 
only the block i> 1, j> 1 needs to be retained in Eq. (6b). For plasma configura- 
tions with a prescribed (fixed) boundary at s = 1 (j= N,), dXy( l)/dt = 0. My is 
therefore restricted to the block i < N,, j < N,. For free-boundary plasmas, the 
values of Xr at s = 1 are determined by the continuity of pressure. This case is 
treated by inserting a “ghost point” [8] one mesh point beyond s = 1. The values 
of Xy at this imaginary point are fixed, and this results in the truncation of My 
for j> N,, with Dr(si- ,,2) + Dz(si+ 1,2 )+~D~(.s~,,,) at i=j=N,. 

Explicit forms for the diffusion elements are easily derived from the MHD forces 
[S]. The result is 

p=2 (‘z~2pB), 

DBRB= R' {Zf[(B"Z,+B~Z&2+(RB~)2]+(R,ZeBB+R6z,B~)2} 
( Ji > 

, 

D$+= ((B")2 & = Ds4, 

~{R:[(B~R,+BQR~)~+(RBQ)~]+(R~~,B~+R,z~B~)~} . 
45 > 

VW 

(7b) 

(7c) 

Vd) 

V4 

Here, P, = B2/2p, is the magnetic pressure, (A ) = (2~))~ JjA de dgl denotes a flux 
surface average, and the subscripts s, 8, and 4 on R and Z denote differentiation 
(e.g., R, = aR/&). The metric elements are g,= RiRj+ZiZj+6, aj+R2, &= 
a(R, Z)/a(s, 0) is the Jacobian, and B' = B . Vi, for i = 19,& are the contravariant 
components of the magnetic field. 

From the preconditioned evolution Eq. (4), it follows that the convergence rate 
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will now be determined by the condition number of the discrete approximation to 
(F-‘F)mn. Since both F”‘” and F”” have condition numbers P- (Nz + c,m2 + czn2) 
(ci are constants, and m and n are the poloidal and toroidal Fourier mode numbers, 
respectively), it follows that the condition number for the composite operator 
(p-‘F) mn is O(1). As a result, the number of iterations required for convergence 
of the preconditioned equations should be independent of the mesh size. This 
conclusion, however, applies rigorously only to the linearized operator in the 
neighborhood of an equilibrium. Thus, there may still be some residual dependence 
on the mesh size for the full nonlinear problem. 

3. RESULTS 

The impact of the preconditioning algorithm on the iteration defined in Eq. (A2) 
can be demonstrated by considering a pair of numerical examples. The first case is 
the determination of a fixed-boundary equilibrium for the Advanced Toroidal Facility 
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FIG. 1. Equilibrium magnetic flux surfaces and IBI contours for the ATF fixed boundary device at 
the two symmetry planes N& = 0 and NF( = z (NF= 12): (a) N& = 0; (b) N&J = I[. 
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FIG. 2. Reduction of force residual, (F[‘, vs iteration number for radial meshes N,= 13, 25, and 31. 
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FIG. 3. Reduction of force residual, IF12, vs iteration number for radial meshes N, = 13 and 43. 
Preconditioning has been applied. 
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(ATF) [9]. ATF is an I= 2, N,:= 12 field period torsatron with a boundary surface 
approximated by 

R = 6.88 + 0.86 cos 0 - 0.24 cos(Q - N,#) + 0.10 cos 20 - 0.03 cos(28 - N,d), @a) 

2 = sin 0 + 0.24 sin(0 - N&) - 0.02 sin 28 + 0.03 sin(28 - N&). (8b) 

The units used in Eqs. (8) render the mean minor radius nearly equal to one. The 
computations reported here correspond to a plasma pressure with (/I) = 0.0125 
and ppeak = 0.036, where j = 2p,p/B*. The rotational transform profile i(s) G 
(B’)/(B)) is computed from the requirement that the net toroidal current, 
(J Vd), should vanish in steady state on each magnetic flux surface. Figure 1 
shows the magnetic flux surfaces (s = const surfaces) and IBI contours for a con- 
verged ATF equilibrium in the two symmetry planes N& =0 and N,& = rc. The 
magnetic surfaces increase linearly with & from s = 0 (the central magnetic axis 
point) to s = 1 at the enclosing boundary curve. The convergence of the force 
residual, IF12, for several radial grids is shown in Fig. 2 (computed without 
preconditioning) and Fig. 3 (computed with preconditioning). These computations 
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R 

i=t, 

FIG. 4. Free-boundary magnetic flux surface evolution for the Helias contiguration in the two 
symmetry planes N& = 0 and NF( = A (NF = 5). 
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were performed with a poloidal mode number spectrum m = 0, . . . . 6 and toroidal 
mode number spectrum n = - 3, . . . . 3 (in multiples of NF) used in Eq. (1). 

The unpreconditioned convergence sequence exhibits a nearly linear dependence 
for the number of iterations Z needed to attain a normalized force residual 
IF/‘< lo-“: I- lSO(N, - 1). In contrast, 15 700 is nearly independent of iV, when 
the preconditioning algorithm is applied. Thus, for radial meshes with N, > 5, there 
is a significant improvement in temporal convergence due to preconditioning. (The 
numerical overhead associated with computing the matrix elements of Eq. (6) and 
inverting the tridiagonal matrix M is negligible.) Note the difference in horizontal 
scales (representing the iteration number) in Figs. 2 and 3. For the finest grids 
shown, the preconditioned iteration converges nearly six times as fast as the 
original iteration. In fact, for N, > 43, the original iteration may cease to converge 
below IFI N 10P9. For N,= 100, the preconditioned scheme converged to 
IFI * = lo-” in 1400 iterations. This result suggests that there might be a remaining 
(though weak) dependence of Z on the radial grid size, N,. 

The next example is a computation for a free-boundary Helias [lo] configura- 
tion. For this case, the outermost magnetic flux surface (s = 1) is allowed to deform 
until there is no jump in the magnetic pressure, B2/2po, at this surface. Self-consis- 
tent flux surfaces are shown for Helias in Fig. 4 in the two symmetry planes 
NF$ = 0 and NFd = n (NF= 5). The temporal evolution from the initial boundary 
contiguration+chosen for simplicity to be a helically rotating ellipse-to the final 
(strongly deformed) equilibrium state was computed by using VMEC for the inter- 
nal plasma force balance and NESTOR [ 1 l] to compute the vacuum field at the 
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FIG. 5. Effect of preconditioning on the free-boundary evolution of Helias. 
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plasma-vacuum interface. For the plasma, modes with m = 0, . . . . 4 and n = - 4, . . . . 4 
were used. The vacuum field is the sum of the magnetic field arising from the exter- 
nal Helias coils alone (in the absence of plasma) plus the induced field required to 
satisfy B . n = 0 at the last magnetic flux surface (s = 1). Here, n is the vector normal 
to the plasma surface at s = 1. In Fig. 5 the convergence rate is shown for this 
Helias computation with N, = 31 radial grid points. Once again, the preconditioned 
iteration scheme shows a substantial reduction in the number of iterations required 
to attain a fixed level of force residual. 

4. CONCLUSION 

A preconditioning algorithm for the inverse MHD equilibrium equations has 
been derived. It is easily implemented and leads to a convergence rate that is 
essentially independent of the number of radial grid points, N,. This represents a 
significant improvement over previous schemes that have convergence rates scaling 
linearly with N;‘. 

APPENDIX A 

The relationship of the time evolution operator in Eq. (2a) to the method of 
conjugate gradients can be demonstrated by integrating Eq. (2a) from t = t, to 
t=t n + i - t, + At. Assuming that l/t and F vary slowly in this time interval yields 
(to lowest order in At): 

V n+l exp(t,+ll~)=V,exp(t,l~)+ex~(t,+ll~jF(X,), (Al) 

where V = dX/dt and F(X,) - F[X(t,)]. Introducing P, = V,/At and noting that 
the optimum damping rate is given by l/r = - d(ln IF(*)/dt (corresponding to 
critical damping of the longest spatial wavelength modes), Eq. (Al) becomes 

P, = Pnpn- 1 + F(X,). (A24 

The X, iteration is simply 

X n+l=L+%Pm 

where a, = (At)2 and p, = lFlz/lF21,- i. 

(A2b) 

Since -F is the gradient of the energy functional W, Eq. (A2a) is the standard 
conjugate gradient choice for the search direction P,. The main difference in the 
present iteration scheme is in the choice of the time-step parameter At which 
determines a, in Eq. (A2b). In the usual conjugate gradient method, the Hessian is 
computed to determine the step length (a,) required to minimize W along the 
search direction. In our nonlinear problem, this method is too complicated and 
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time-consuming. Instead, At is required to satisfy the Courant-Friedrichs-Levy 
stability condition for explicit time discretizations of hyperbolic partial differential 
equations. 
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